
Chapter 9

Central Potentials

In this Chapter we will study the Schroedinger equation for a particle in 3 dimensions and
subjected to a central potential V (r), thus depending only on the distance from the center
of coordinates r =

√
x2 + y2 + z2. This is a case of paramount importance in physics,

since potentials such as the Coulomb interaction intrinsically have radial symmetry as in
this case.

9.1 The Hamiltonian
Analogously to the classical case, the Hamiltonian takes the form:

Ĥ = p̂2

2M + V (|r⃗|), (9.1.1)

with the first term corresponding to the kinetic energy,

K̂ = p̂2

2M = − ℏ2

2M∇2 , (9.1.2)

where we have called M the mass of the particle. Since the potential depends only on the
distance r = |r⃗|, and not on the angle, it is clear that when rotating the coordinate system
of an arbitrary angle the potential energy will not change. This implies that the potential
energy commutes with the rotation operator D̂(θ) and in turn that also the components
of the orbital angular momentum must commute with V̂ :

[L̂α, V̂ ] = 0 , (9.1.3)

and as a consequence the orbital angular momentum squared L̂2 will also commute with
the potential energy

[L̂2, V (x̂)] = 0 . (9.1.4)

Moreover, the kinetic term also commutes with the rotation operator D̂(θ), since p̂2 is
the norm of the vector p̂ = (p̂x, p̂y, p̂z) and by construction we have seen that rotations in
any direction do not change the norm of vectors, thus

[L̂α, p̂
2] = 0, [L̂2, p̂2] = 0 . (9.1.5)
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It then follows that the whole Hamiltonian commutes with the orbital angular momentum
operators

[L̂α, Ĥ] = 0 (9.1.6)
[L̂2, Ĥ] = 0. (9.1.7)

Because of the last two relations, we can immediately deduce that the states |l,m⟩ we
have found in the previous Chapter are also eigenstates of the Hamiltonian, and that a
generic eigenstate of the Hamiltonian is therefore of the form we previously found:

⟨r⃗|l,m⟩ = Φl(r)Y l
m(θ, ϕ) . (9.1.8)

In the previous Chapter, we had seen that the radial part, Φl(r), is an arbitrary function
that cannot be determined diagonalizing the orbital angular momentum only. In this
Chapter, we will show that the radial function satisfies a one-dimensional Schrödinger
equation (for the radial variable r) with a modified potential energy, that we can call
Veff(r) and that we will determine in the following.

Exercise 1.1 In this exercise, we will formally show that the Hamiltonian for a particle
in a central potential commutes with the orbital angular momentum operators.
We will do this derivation in steps. We first start by examining the commutation relations
with the kinetic energy operator.

1. First show the L̂z has the following commutation relations with the components of
the canonical momentum by using the classical definition.[

L̂z, p̂x

]
= iℏp̂y,

[
L̂z, p̂y

]
= −iℏp̂x,

[
L̂z, p̂z

]
= 0, (9.1.9)

2. Generalize this result to show

[
L̂i, p̂j

]
= iℏεijkp̂k (9.1.10)

3. Then using your previous result along with the identity [A,BC] = B[A,C]+[A,B]C
show that [

L̂i, p̂
2
]

= 0, p̂2 = p̂2
x + p̂2

y + p̂2
z (9.1.11)

where i ∈ {x, y, z}.

4. Using the result of the previous question and the same identity, show that indeed
the orbital momentum operators commute with the kinetic energy operator,i.e.

[
L̂i,

p̂2

2m

]
= 0 ∀i ∈ {x, y, z},

[
L̂2,

p̂2

2m

]
= 0 (9.1.12)

We now follow a very similar for the potential operator.

1. Show that the z-component of the orbital angular momentum has the following
commutation relations[

L̂z, x̂
]

= iℏŷ,
[
L̂z, ŷ

]
= −iℏx̂,

[
L̂z, ẑ

]
= iℏẑ (9.1.13)
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2. Generalize this result to [
L̂i, q̂j

]
= iℏεijkq̂k, (9.1.14)

where q̂1 = x̂, q̂2 = ŷ, q̂3 = ẑ.

3. Show that [
L̂i, q̂

2
]

= 0 ∀i ∈ {1, 2, 3},
[
L̂2, q̂2

]
= 0 (9.1.15)

4. Since we are working with central potentials, the potential energy is a function of
r. However, let us further consider that it depends on r2 such that V (r2). By
expanding the potential in a power series of x2, show that[

L̂i, V (r̂2)
]

= 0 ∀i ∈ {x, y, z},
[
L̂2, (r̂2)

]
= 0 (9.1.16)

Thus we have indeed shown that the Hamiltonian commutes with the angular orbital
momentum operators.

9.2 The Kinetic Energy
The expression of the kinetic energy can be greatly simplified using the angular momentum
operator. In order to do so, we consider the important identity

L̂2 = r̂2p̂2 − (r̂ · p̂)2 + iℏr̂ · p̂, (9.2.1)

whose demonstration is straightforward but a bit lengthy. The above relation can be
projected onto a ket in spherical coordinates space, |r⟩ = |r, θ, ϕ⟩, and we obtain

⟨r| L̂2 |ψ⟩ = ⟨r|
[
r̂2p̂2 − (r̂ · p̂)2 + iℏr̂ · p̂

]
|ψ⟩ . (9.2.2)

However, the last term is easily expressed in spherical coordinates, recalling that

r
∂

∂r
= r

(
∂x

∂r

∂

∂x
+ ∂y

∂r

∂

∂y
+ ∂z

∂r

∂

∂z

)

= x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

= r · ∇,

thus
⟨r| r̂ · p̂ |ψ⟩ = −iℏr · ∇ ⟨r|ψ⟩ = −iℏ

(
r
∂

∂r

)
⟨r|ψ⟩ . (9.2.3)

Similarly, for the second term,

⟨r| (r̂ · p̂)2 |ψ⟩ = ⟨r| [r̂ · p̂] [r̂ · p̂] |ψ⟩ = −ℏ2
(
r
∂

∂r

)2

⟨r|ψ⟩ . (9.2.4)

Combining all these results, we arrive at the following expression for the kinetic energy
operator in the Hamiltonian:

1
2M ⟨r| p̂2 |ψ⟩ = − ℏ2

2M

(
∂2

∂r2 + 2
r

∂

∂r

)
⟨r|ψ⟩ + ⟨r| L̂2 |ψ⟩

2Mr2 . (9.2.5)
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Physically speaking, this kinetic energy contains two parts that are easy to recognize: a
term corresponding to the rotational kinetic energy (the second term) and another term
that corresponds to the radial kinetic energy.

Exercise 1.2 We want to show that

L̂2 = r̂2p̂2 − (r̂ · p̂)2 + iℏr̂ · p̂ . (9.2.6)

Consider the classical definition of L̂ = r̂ × p̂, expressed as follows

(r̂ × p̂)i =
∑
jk

ϵijkr̂j p̂k . (9.2.7)

We will also use the identity involving the product of two Levi-Civita tensors (which you
may prove if you wish), ∑

i

ϵijkϵilm = δjlδkm − δjmδkl . (9.2.8)

Using these two facts, show the above result.

9.3 The Radial Equation
We have previously seen that the Hamiltonian commutes with L̂2, thus the eigenfunctions
of the Hamiltonian must also be eigenfunctions of L̂2 and all the components L̂α of the
angular momentum. The time-independent Schrödinger equation

− ℏ2

2M

(
∂2

∂r2 + 2
r

∂

∂r

)
ψ(r) + ⟨r| L̂2 |ψ⟩

2Mr2 + V (r)ψ(r) = Eψ(r), (9.3.1)

can be then simplified noticing that L̂2 is acting on its eigenstate, thus

− ℏ2

2M

(
∂2

∂r2 + 2
r

∂

∂r

)
ψ(r) + ℏ2l(l + 1)

2Mr2 ψ(r) + V (r)ψ(r) = Eψ(r). (9.3.2)

Moreover, we have seen that all eigenfunctions of the Hamiltonians are of the separable
form

ψ(r) = Φl(r)Y l
m(θ, ϕ), (9.3.3)

where Φl(r) is a radial function to be determined, and Y l
m(θ, ϕ) are the spherical

harmonics we have derived previously.

Substituting Eq. (9.3.3) into Eq. (9.3.2), we have that the following differential equation
has to be satisfied by the radial part:[

− ℏ2

2M

(
∂2

∂r2 + 2
r

∂

∂r

)
+ l(l + 1)ℏ2

2Mr2 + V (r)
]

Φl(r) = EΦl(r). (9.3.4)
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Notice that from the beginning we have dropped the index m in the radial part (Φl
m(r) →

Φl(r)), and it is clear from the equation above that indeed Φ depends only on l. This
differential equation can be further simplified making the substitution

Φl(r) = ul(r)
r

, (9.3.5)

yielding an effective one-dimensional Schrödinger equation:[
− ℏ2

2M
∂2

∂r2 +
(
l(l + 1)ℏ2

2Mr2 + V (r)
)]

ul(r) = Eul(r). (9.3.6)

9.4 Properties of the radial wave function
The 1D Schrödinger equation for the radial wave function ul(r) is an important result of
the previous section, because it allows us to map the complicated 3D Schrödinger equation
on a case that is easier to analyze, both for numerical and analytical studies. The radial
equation is entirely equivalent to a one-dimensional Schrödinger equation in the radial
variable, for a particle moving in an effective potential

V l
eff(r) = l(l + 1)ℏ2

2Mr2 + V (r). (9.4.1)

The term l(l+1)ℏ2

2Mr2 is known as the centrifugal barrier and it is a repulsive force that increases
for larger angular momenta l. Intuitively, what happens then is that at higher angular
momenta the effective force felt by the atom increases, and, as we will see, states of large
l correspond to wave functions in which the atomic density is "pushed away" from the
origin. The radial wave function has also other general properties that we can deduce
here.

9.4.1 Normalization
We start recalling that the overall wave function of the problem has been separated into
a radial and an angular part, in a way that

ψ(r) = Φl(r)Y l
m(θ, ϕ), (9.4.2)

= ul(r)
r

Y l
m(θ, ϕ), (9.4.3)

and that the overall normalization for the wave function is∫
dr|ψ(r)|2 =

∫ ∞

0
drr2|Φl(r)|2

∫
dΩ|Y l

m(θ, ϕ)|2, (9.4.4)

and that since the spherical harmonics are already normalized to 1 over the angular
variables (see discussion in the previous Chapter), we are left with the normalization
condition ∫ ∞

0
dr|ul(r)|2 = 1. (9.4.5)

We therefore see that ul(r) is, to all practical purposes (including normalization), a one-
dimensional wave function for a particle constrained in the region 0 ≤ r < ∞.
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9.4.2 The Small r limit
In the limit of small distances r → 0, the radial equation can be used to find general
properties of the radial wave function. We start making the assumption that ul(r) ∼ rs

for small r, where s is some power we want to determine. With this assumption, we have

− ℏ2

2Ms(s− 1)rs−2 + l(l + 1)ℏ2

2M rs−2 + V (r)rs = Ers. (9.4.6)

So far we haven’t made any assumption about the central potential itself, but we need to
make sure that it has some reasonably good behavior when approaching the origin. Here
we make the assumption that the central potential is sufficiently regular, i.e. it can be
divergent at the origin, but with a power such that at least

lim
r→0

r2V (r) = 0, (9.4.7)

notice that this is the case, for example, for the Coulomb potential V (r) ∼ 1/r. If this is
the case, then the dominating term for small values of r is the powers rs−2, thus in order
to cancel the divergence in Eq. (9.4.6), we need to have that the terms proportional rs−2

cancel out, thus requiring
s(s− 1) = l(l + 1), (9.4.8)

which is satisfied for two possible values:

s = l + 1 (9.4.9)

s = −l. (9.4.10)

This in turn implies that either ul(r) ∼ rl+1 or ul(r) ∼ 1
rl , for small distances. However,

recalling that l ≥ 0, we now argue that only the first solution is acceptable. If, for l ≥ 1,
the second possibility is considered, we would then have a divergence at the origin that
would violate the normalization condition, which is clearly unacceptable. For l = 0, the
normalization could still be satisfied, however this would imply that Φl(r) ∼ 1

r
, and this

comes with other issues. An intuitive argument for this is that the 3-dimensional kinetic
energy would then behave as

∇2 1
r

= −4πδ3(r), (9.4.11)

thus for the energy E to be finite, we would need the central potential to compensate
the delta singularity. However, because we are considering here only regular potentials
satisfying Eq. (9.4.7), we argue that ul(r) ∼ 1

rl is not an allowed behavior. In conclusion,
we must have

ul(r) ∼ rl+1, (9.4.12)

for small r, and the probability density of finding the particle at the origin is always
vanishing, since for l ≥ 0

|ul(0)|2 = 0 . (9.4.13)
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9.5 Coulomb Potential
We now specialize our discussion to the very important case of a Coulomb potential. We
consider here the case in which a single electron (we ignore its spin degrees of freedom)
feels the interaction potential due to a nucleus of charge Ze. If we make the assumption
that the nucleus is much heavier than the electron, we can neglect the motion of the
nucleus and only consider the electron motion in the field of the nucleus. Notice that this
assumption is very well verified in practice, since a proton is almost 2000 times heavier
than an electron (mp/me = 1836.15 . . .). The Hamiltonian then simply reads

Ĥ = P̂ 2

2me

− Ze2

|r̂|
, (9.5.1)

where me is the electron mass. We therefore see that this is a special case of a central
potential, and that the radial equation to be satisfied is[

− ℏ2

2me

∂2

∂r2 + l(l + 1)ℏ2

2mer2 − Ze2

r

]
ul(r) = Eul(r). (9.5.2)

The potential energy goes to zero at infinity, thus bound states must have negative energy.
Focusing then on bound states only, with E = −|E|, we can get rid of dimensional factors
through the following dimensionless distance:

ρ =
√

8me|E|
ℏ2 r. (9.5.3)

With this substitution, the radial equation becomes

d2u

dρ2 − l(l + 1)
ρ2 u+

(
λ

ρ
− 1

4

)
u = 0, (9.5.4)

where we have also introduced
λ = Ze2

ℏ

√
me

2|E|
. (9.5.5)

The above differential equation is still not easy to solve analytically (it’s very easy to solve
on a computer though), but we can still deduce the spectrum of eigenvalues just looking
at the asymptotic behaviors of the radial wave function.

9.5.1 Behavior at ρ → ∞
In this regime, the above differential equation simplifies to

d2u

dρ2 − 1
4u = 0, (9.5.6)

which has solutions
u(ρ) = Ae−ρ/2 +Beρ/2. (9.5.7)

However, we have previously seen that u(ρ) must be normalizable, thus we must have
B = 0.
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9.5.2 Regular Solutions
Since we know both the large ρ behavior, and the small ρ behavior (from the general
discussion on the properties of the radial wave-function), we can attempt to find a solution
that satisfies both boundary conditions, of the form

u(ρ) = ρl+1e−ρ/2F (ρ), (9.5.8)

where we can expect now F (ρ) to be a smooth, non-singular function. With this further
substitution we have

d2F

dρ2 +
(

2l + 2
ρ

− 1
)

dF
dρ +

(
λ

ρ
− l + 1

ρ

)
F = 0, (9.5.9)

which we can now attempt to solve considering a series expansion for the function F

F (ρ) =
∞∑

k=0
ckρ

k, (9.5.10)

with the only constraint that c0 ̸= 0, so to guarantee that u(ρ → 0) ∼ ρl+1. With this
series expansion, we see that the coefficients ck must satisfy

∞∑
k=2

k(k − 1)ckρ
k−2 +

∞∑
k=1

(2l + 2)kckρ
k−2 +

∞∑
k=0

[−k + λ− (l + 1)] ckρ
k−1 = 0. (9.5.11)

Making the change of indices k−1 = k′ in the first two summations and further renaming
k′ → k, we get

∞∑
k=0

[k(k + 1) + (2l + 2)(k + 1)] ck+1ρ
k−1 +

∞∑
k=0

[−k + λ− (l + 1)] ckρ
k−1 = 0, (9.5.12)

which is satisfied if
ck+1

ck

= k + l + 1 − λ

(k + 1)(k + 2l + 2) . (9.5.13)

This equation behaves like
ck+1

ck

∼ 1
k
, (9.5.14)

in the limit of large k. However, this is the same asymptotic behavior that you can expect
from the function eρ, for which ck = 1

k! . This behavior is therefore again forbidden, since it
would imply that u(ρ) ∼ eρ and thus the radial wave function would be not normalizable.
The only possibility here is therefore that the series expansion terminates at some value
of kmax such that ck = 0,∀k > kmax. The termination condition implies

kmax + l + 1 − λ = 0, (9.5.15)

where kmax = 0, 1, 2, . . . and recalling the definition of the factor λ in terms of the energy,
we finally have that the spectrum of energy eigenvalues is given by

E = − meZ
2e4

2ℏ2 (l + 1 + kmax)2 . (9.5.16)
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This can be further simplified noticing that we can define an integer, called principal
quantum number, such as

n = 1 + l + kmax , (9.5.17)

thus yielding the quantized eigenvalues

En = −meZ
2e4

2ℏ2n2 , (9.5.18)

where now n = 1, 2, . . .. For the Hydrogen atom (Z = 1), the numerical constant is given
by

mee
4

2ℏ2 ≃ 13.6 [eV] . (9.5.19)

9.5.3 Examples of Eigenstates
To summarize, the eigenstates are indexed by the principal quantum number as well as
by the angular momentum indices. It is also given by

⟨r|n, l,m⟩ = Ψnlm(r) = Φl
n(r)Y m

l (θ, ϕ) = ul
n(r)
r

Y m
l (θ, ϕ) , (9.5.20)

where we have explicitly added the dependency of the radial functions Φ both on l and
n, the principal quantum number, since we showed that

ul
n(ρ) = ρl+1e−ρ/2F (ρ) =

= ρl+1e−ρ/2
kmax∑
k=0

ckρ
k =

= ρl+1e−ρ/2
n−1−l∑

k=0
ckρ

k . (9.5.21)

The dimensionless radial variable is given by

ρ =
√

8me|E|
ℏ2 r = 2

n

(
mee

2

ℏ2

)
r = 2r

na0
. (9.5.22)

where we have introduced a characteristic length scale for the hydrogen atom introduced
by Bohr, and known as the Bohr radius:

a0 = ℏ2

mee2 ≃ 0.529 [Å] = 52.9 [pm] . (9.5.23)

For example, these expressions allow to easily find the ground state wave function, for
which we have n = 1 and l = 0. The radial part for the ground state reads

u0
1(ρ) = c0ρe

−ρ/2, (9.5.24)

Φ0
1(r) = 2

( 1
a0

)3/2
e−r/a0 , (9.5.25)
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where the normalization constant c0 has been explicitly computed imposing∫ ∞

0
dr|c0|2|u0

1(r)|2 = 1 . (9.5.26)

Taking into account also the angular dependence through the spherical harmonic, the full
wave function for the ground state is then

Ψ100(r) = Φ0
1(r)Y 0

0 (θ, ϕ),= 1√
πa3

0

e−r/a0 . (9.5.27)

From this expression we clearly see that Bohr’s radius plays the role of a characteristic
distance after which the probability of finding the electron is exponentially suppressed.
Similarly, other low-energy eigenstates can be explicitly found. We quote here a few of
them:

Ψ200(r) = 1
4
√

2πa3
0

(
2 − r

a0

)
e−r/2a0 , (9.5.28)

Ψ210(r) = 1
4
√

2πa3
0

(
r

a0

)
e−r/2a0 cos θ, (9.5.29)

Ψ21±1(r) = 1
8
√
πa3

0

(
r

a0

)
e−r/2a0 sin θ . (9.5.30)

9.6 References and Further Reading
The discussion in this Chapter discusses the eigenstates of central potentials, a topic
which is found in all quantum mechanics books. For example, Cohen-Tannoudji’s book
contains, in Chapter 7, a detailed discussion.
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